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FOREWORD

The filamentation instability properties of a relativistic hollow electron
beam confined in axial flow by a uniform magnetic field in a pipe are investigated
via the Vlasov-Maxwell equations. The instability is found to have two sidebands,
one with a spectrum of positive wavenumbers k and the other with a spectrum of
negative wavenumbers. The spectral point k=0, associated with the diokotron
instability, is excluded from the filamentation instability's two unstable
sidebands. Only in the 1imit of zero axial beam flow (y+1), the diokotron
instability becomes asymptctically part of the filamentation instability spectrum.
In this limit the filamentation instability's two sidebands merge asymptotically
and symmetrically toward the diokotron instability spectral point, k=0, in
agreement with the basic driving physical mechanisms and geometry configurations
for these two distinct and different instabilities.

IRA M. BLATSTEIN
By direction

Btikhe.
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TNTRODUCTION

In a recent paper by Uhm and Siambis1

the diokotron instability of a
hollow relativistic electron beam in a conducting pipe guided by a uniform axial
magnetic field was investigated. Relativistic and electromagnetic effects were
included in the derivation of the properties of the instability. In Reference 1
the analysis of the diokotron modes proceeded by taking the limit k=0, ab initio,
where k is the wave number along the beam. This restriction, of k=0, for the
diokotron modes has been assumed in all earlier treatments of the diokotron
instability2‘4. Physically this assumption was motivated by the geometrical
configuration of the magnetron tube2 in particular, as well as other crossed
field (E-cross-B) beam devicesB’5 utilizing hollow electron beams. Instabilities
in hollow beams, in long cylindrical pipes, confined in axial flow by a uniform
magnetic field, were investigated experimentally by Kyhl and webster6 and
analytically by Pierce7 in order to establish the mechanisms for noise generation
and amplification in traveling wave microwave tubes with hollow beams. These
early investigator56’7 found that low voltage, low current hollow electron beams

can break up into vortex filaments, similar to those associated with the diokotron
instability, and in addition they exhibit a non-zero wave number, k#0, along the
applied magnetic field. They observed that the azimuthal wave length of the
instability was comparable to the longitudinal wave length of the instability.
They also observed that this comparability in axial and azimuthal wave lengths

was maintained as the instability actually evolved from the fastest growing short
wave lengths to the slower growing longer wave lengths. They called this in-
stability the filamentation instability. These early investigators were interested
in whether this phenomenon, at low levels, contributed to microwave tube beam
noise. They concluded that a direct contribution to beam noise seemed unlikely
since the waves did not have the proper symmetry to couple to the rf circuits

of the microwave tubess. This observation resulted in lack of broad further
interest in this phenomenon.
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More recently intense relativistic hollow electron beams have become
the object of intense experimental and analytical investigations in connection
with a broad spectrum of modern applications such as high current electron beam
accelerators, collective accelerators, gyrotrons, free electron lasers and fusion.
It is the purpose of this work to investigate the properties of the filamentation
instability for intense, relativistic hollow electron beams of interest in current

~ applications. In carrying out the analysis we shall follow the technique of

Reference 8. In Section II the relativistic electron hollow beam eguilibrium
state is analysed. In Section III a Vlasov-Maxwell stability analysis is carried
out. In Section IV the axisymmetric, =0, space charge mode for the hollow beam
is obtained and found to be in agreement with results from more approximate
theories. In Section V the filamentation instability modes, 2>3, are analysed
and discussed. In Section VI conclusions are presented.
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EQUILIBRIUM

We consider the equilibrium configuration illustrated in Figure 1,
consisting of an intense hollow relativistic electron beam propagating in a
drift tube parallel to a uniform applied magnetic field, Boéz, with velocity
stéz‘ Cylindrical coordinates (r,8,z) are used, with the z axis along the axis
of symmetry. The beam is described by a distribution f(F,E,t) which satisfies
the Vlasov equation

) >
S VeTa - e(E s

0l<i

B | fF = 0 (1)

where ¥ stands for the cylindrical coordinates, the momentum p for PrsPasPys
the fields E and B are the external and self-consistent fields associated with
the beam flow. The velocity vV is given by

Vep/mo o, 8 = v/c (2)

where 1
_ P2 ] 3\
LA R Y

and -e, m are the charge and rest mass of the electron, and ¢ is the velocity
of light.

The hollow beam equilibrium flow distribution, suitable for the
application at hand, is given in terms of the constants of the motion.

noRo
= - - 2 -
fb Z“me s(H gbcPZ YoMe /Yb) 5(Pe Po) ()

where the total energy

H = (m2cH + pZC“)% -e¢o(r) ,
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the canonical angular momentum
Py=r(p, - €81 (6)
8 8 2c o ?

and the axial cononical momentum

= - £ :
P, =p, - ¢ AMr) (7)
are the three single particle constants of the motion.

The constants Ny Ro’ Po’ Yp and Y, are identified as follows: The

quantity n, is the value of the density nb(r) at the median radius Ro as shown
in Figure 2, P0 is the value of the canonical angular momentum at r=R°, Yomc3
is the total electron energy at the beam frame, and Yp is given by

- 2-1’
Yb"(l'sb)z

We also define the energy variable U
- - - 2
U=H- 8P, - yme?/yy (9)

and write the equilibrium distribution as

n R

£, o= s(U)S(Py - P

b= ZWmYb ) . (10)

0

After a straightforward algebra, U in Equation (9)‘is expressed as

Y -y
Uus=y———-o mc? - 9{¢°(r) - BbAZ(r)li s (11)

where y'mc? is the electron kinetic energy at the beam frame.
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The equilibrium electromagnetic fields are obtained from the scalar
potential oo(r) and vector potential Az(r) fron Maxwell's eguations

13 3. - A
F 3? r SF Qo(r) = 4nenb(r) (]?)
13 .3 = ) :
j =5 T 3n Az(r) 4ne8bnb(r) (13) ;
r
- 3
where nb(r) = [ d pfb(H,Pe,Pz) , (13)

which is found to be

0 , r <R,
nb(r) = noRO/r » Ry <r<R, . (15)
0 s U > R2

3 (r)
E{r) = - —— = -4ren R (1 - Ri/r) , Ri<rc<R (16) |
A_(r)
R A )
Be(r) - - ar 4ﬂe8bnORO (1 Rl/r) > Ri <r <R . (17)

The radial forte balance on the beam electron field element, obtained from
Equations (1) and (4), is

Vg(r)
c

IETX;S:Z_ = el|E (r) +

> . B, - 8,85(r)| . (18)

We define the equilibrium rotation frequency

we(r) = Vg(r)/r (19)

11
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and from Equation (18) write down its value for the median electron fluid element

at r=Ro,
s W 4m2b a YE
we(Ro) = we(Ro) = —-2- [1 g (1 - ?g%gﬁo-
where eBo
We = chb ’ (21)
. 4Treznb (
we, = s 22)
pb me

and a = R, ~ RO = Ro - Ry is the half thickness of the hollow beam. The egquilibrium

state of interest is the one with the slow rotational frequency w;(R Y. Additional
properties of the general equilibrium state, assumed here through Equation (11),

are similar to those derived in Reference 8 for the non-relativistic case.
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STABILITY ANALYSIS

In this section we use the linearized Vlasov-axwell equaticne to
investigate the general normal modes (L > 0, k. # 0) and their stability pro-
perties for the type of intense, hollow beams discussed i1n the equilibrium
section. We adopt a normal mode approach in which all perturbed quantities are
assumed to vary with r, 8, z, and t as

su(Fat) = dy(r) exp [1(xo + kz - wt) : (23)

For the electromagnetic fields we assume the TM (transverse magnetic) modes which
have the following field components

SF = +8 6E_ + & 6F

&8

8,38 + 8,08, (25)

and which satisfy the linearized Maxwell's equations

V-SE = 4ndo (26)
Ux6E = l‘cﬂ o8 (27)
xsB = 4T 53 m‘i% SE (28)

Sbustitution of Equation (28) into Equation (27) and rearrangement with
Equation (26) generates the wave equation for GEZ

2
13 2 00 (x2 . 2/¢2) 8E, = 4mik(dp - 7 89 (29)

roar " 3r " r? z)

However, the axial component of the perturbed current density is approximated by

13
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GJZ = Bbcdo . (30)

The analysis will now be restricted to the cases of interest, where
Va/c << 1 and

. .
- b a

w(R)=w =22 & (31)
e''o eo Yéwc Ro

w = kvb + Rweo (32)

wzb

2 o 2 _

w! =Wl ;E— (1 +2a/R) (33)

w - kB.c - 2w |2

| b el 2 1 . (34)

| Ys Ra

With these assumptions the 5Jr and éde source terms in Equation (30) can be neglected.
Also for wave numbers k satisfying

(K2RZ/y2) << 1 (35)

the third term in the left hand side of Equation (29) can be neglected, resulting
in the approximate wave equation

12 .3 _22s - ( _9)

[Far‘”ar'?]“z'““‘k 1- &p . (36)
Next, the source term &p will be evaluated by first finding the perturba-

tion §f, of the distribution function fb’ from the linearized Vlasov equation

-

t
6f = ?/ﬁdt‘ exp(~iwt') exp(ikz + i¢8) [63 + !553] é——-fb (37)
L w p'
where the integration in t' is carried along the equilibrium particle trajectories.
We integrate by parts with respect to t' and change variables to Tt = t' - t, to

find
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) be _ be afb )

iksf = e%GEZ(r) vt 1l(w - kgbC) TR apa ]I; (38)
where the orbit integral 1 is defined by

0

1 =./rdr6Ez(r') exp[~im1 + ig{8' - 8) + ik{(z' - z)] . (39)
In order to evaluate Equations (37) - (39), we use

. (Pg - Py)

B = wgy - M “;Eﬁﬁg—‘- (40)

= wd/w? -
u wy/we 1 (41)
2P \? 442 a
2 o |0} =210 ) . 42

Yo (meRC)) We (1 waCRO) (42)

We assume fhatz,(mclws) << Ro/a and we approximate SE by f
P, - P w. s338E
' - 9 o _O Z)
§E(r') = SE_(R)) + YR w2 ( ar (43)
b0 s Ro
so that :
P,-P ko' 1
P.~P_ w, /3¢k 8 o ' Z
_ s 8 00 z) w-kBC-Q(m -u——)-T] (44)
I =1 (SEZ(RO) + 7R a‘z( o ]{ o eo meRé Yam
b7 o s Ro
where
R - 45

pZ Yb (PZ meBbC) . ( )
Next the charge perturbation Spis obtained by carrying out the momentum space
integration

S¢ = -e [&f d°p (46)

to find the fina..approximate form of the wave egquation

15
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R w? wh fw -
B oo - ()
@ wg (1 ke [ GEz(r) GEZ(RO) Q Ry GEZ(RO)
§(r-R +a) &(r-R —a)] R
0 0 0
8 [ r * r * ‘”;b '7@[32' (r'Ro)ZJ
2
) (1- ﬂ)[- Li_cSEZ(Ro) . iaEz(fo) ) nmoz (aaEZ> _1_] (47)
kc Yb N2 R° Q Rd”s ar Ro 9]
where
2= w - Ry, - kBC ' (48)
and (® (x) in the Heavyside step function
1, x>0
® (x) = . (49)
0, x<0

Having found an expression for 8o we can now check the validity of
Equation (30), which equivalently neglects the Gdr and SJe contributions. The
GJr contribution is of order

g

and the GJe contribution is of order

LV
—C_G. << 1 ) | (51)

16
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THE g=0 CASE

We shall first evaluate the 2=0 case, which should reproduce the well
known symmetric space charge waves of the hollow beam. The wave equation reduces
to,

3
or

[G(r - Ro +a) &r- R0 - a)

1 3 =
T r T ‘SEZ =S 5EZ(Y‘) - (SEZ(RO)] T + -

RO 2 2
- N2 (R)® a2 - (r - R} . (52)

We solve this equation by following the steps from Equation(88) to Equation{S9iof
Reference 8 to find

[1 s 1n(3-§—§—2-) + 52 1n(§—i—) In(%;—)] (1 + N)

Cc
Hl -5 1n(%§>]ln(;9> s slln(-s—z)ﬁm
[of
-{[1 -5 1n<§i” +S 1n<;2);a2 =0 (53)
[ C

where . 22.2%2 (1 ) 325) (54)
(- R)s (55
ap = (1-5) NRL-S (56)

Q
n
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After Taylor expansion of Equation (53), we find i

3 1,
l+ 3+ 5¢ R
2 2v 2 2 R c
(w - kaC) = ;g g ke (ke wa) In R, (58)
where 2
w wB
b b
€ =U‘§’—-(1 ‘W) (59)
and v is Budker's parameter defined by
4R jan, e’ |
V= e — (60) |
and Nb = 41rR°anb is the number of particles per unit axial length.
When €+0, then Equation (58) reduces to
(w - kB, c)? = 2y (k%¢? - w?) In EE (61)
b Y3 Rz !
] which is identical to the result obtained by Briggs9 for the hollow beam and solid

beam space charge waves. In obtaining Equation (61), use has been made of the
approximation w = KSbC.
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THE :#0 CASE

We solve Equation (47) for the general case of 2#0 by following the
steps from Equation(88) to Equation{99)of Reference 8. In oOrder to keep the size
and form of the resulting algebraic eigenvalue solution short and simple, we
utilize first the following notation:

R w? wB
- _z_p_b.( . _2)
51 %3 w? 1 - (62)
wzb wBb) Ruy
sz=-ﬁ;—('rc—‘—sr (63)
w? (1 - —33)22 k2R?
N1=_2b_____'<£__(u-fz;g) (64)
(2% - 1) b
wB
b !
tw. w? (1 - --—-)
- . o pb kc ,
N2 = -3 w227 - 1 : (65)

The eigenvalue solution becomes

ag2g, + 215, + 215,(2L 22+ (229, + Sy) Si{l - 51)21 ]
gf 1 221 R, gf 1 1 R, ‘

L
x(1+ Ny + N2) + (Rge + Sy (X - X;)(%l> - (20 + S))(X2 + X )(EQ)
0

sitte - xR [ty - 1o 5000 00 52)
0

+ 2wz(%:)2{(%~;)(1 -2 - 5)(S: - S2) +(%—i) (1-2+ag,+5)

x (51"’52)] =0

19
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where
X, = % (1 -2 - S))Ny - (Sy + S,)(1 + Nyp) (67)
0
Xe = 82 (1 -4+ &g, + SNy + (S) - S2)(1 + Ny) (68)
0
X = [B—l 1
R -2-51)+51+52J2N2 (69)
X -[31(1 2+ 209, +S51) - S, +
0 = Ro - 9¢ 1) - S1 + Saf 2Nz (70)
and 9 = |1 - (Ra/RP*|™ : (71)

Next, we Taylor expand Equation (66), following the approach of
Equation (101) of Reference 8, to find

2 2
Po+r,Rbloa +1‘8§353 =0 (72)
1T R0 TR ST R % T
s 0 0
where " w?
rosgel s B2e) | (73)
s
(1)2 w2
Ty = 2(2 + G;LQEZO)(gf - 1) - 7(%2_ Eo (74)
s s
k2R? w? w'
=(y - 0 _%a 37pb o, 4a 17pb 2f _ 2%a
F> (“ AT R L (1 3R°)€o+2w; o R )]
w? 1 w? w®
. 9| pbf, _3%a b (; . 23) .2
“’g[‘*’é (1 Ro)eo + 23 (1 R )Eo] (75)
wBb
EO-I-FC—- . (76)

In the 1limit of Tower intensity beam current satisfying w;bzs wé, the
dispersion relation of Equation (72) simplifies to

fﬁg Y a EEQ 2a “Eb a KRS
gf + Zl(gf-l) “’g €° ?K"’ P Eo q [L";Yé (9,-2) R—o' - w— = 0 . (77)
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Equation (77) is the final form of the dispersion relation for the
modes of interest. It has been solved numerically for the growth rate L5 = In
and the Doppler-shifted real oscillation frequency Q. = Re Q. where ¢ = w-kaC - z“eo’
for a broad range of system parameters, Yp wpb/wc’ wpro/c, a/R0 and Ro/Rc°
Typical solutions are shown in Figures 3 for Yy = 1.1 and 4 for Yp = 3. First
of all we note that for azimuthal mode numbers ¢= 0, 1, and 2 the solution of the
dispersion relation of Equation (77) gives only stable waves. Unstables modes
appear for £ .2 3 as shown in Figures 3 and 4. Several points are noteworthy in
Figures 3 and 4. First, and contrary to all previous studies of the diokotron
instability, we observe that as k-0 the diokotron instability disappears and is
replaced by two fast waves. For low y beams, Figure 3, we note that the well
known filamentation instability occurs at small, but non-zero Wavenumber k, it has a
spectrum in k space which jis nearly symmetric about the k=0 point, and excludes the
k=0 point. The doppler shifted frequency of oscillation, given by

2

w
Q = w, - kB .C - 25— —2—2
r b RO YEwe

- (78) ?

js constant, to lowest order, within the spectrum of instability for low vy beams,
vy~1, while the instability growth rate decreases away from the maximum occurring
near the k-»+0 points. Both the growth rate and k-spaca spectral width of the
instability increase with the azimuthal mode number 2. The real frequency Sy
also increases with 2. For higher v beams (Figure 4, Yy = 3) we find that the
lowest order symmetry about the k=0 point, that was observed in Figure 3 for

Yy © 1.1, nocw disappears. We note in comparing Figures 3 and 4 that the growth
rate and the doppler-shifted real frequency decrease when the y of the beam
increases.

Figure 5 shows the effect of varying the applied magnetic field in
controlling the instability. For the positive k part of the instability spectrum
we note that both the growth rate and spectral width decrease with increasing
applied magnetic field while there also occurs a shift of the spectrum to longer
wavelengths,

21
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Figure 6 illustrates the dependence of the growth rate on the beam
energy y,, over the positive k spectrum of instability, for the indicated
parameters. The growth rate of the instability is monotonically reduced ty
increasing the beam energy. On Figure 6 we define the parameters %o m and
d? for convenience in further analysis and discussion. The symbol %o stands for
the long wavelength cutoff limit of the instability positive k spectrum and the
pair of symbols GQ/mpb. Cm stand for the value and associated wave number of
maximum growth rate. Figure 7a shows the variation of %o and T with Yp and
Figure 7b shows the variation of d?/wpb vith Yp for the indicated parameters.
The wave numbers % and T increase sharply for Yy > 1 and quickly saturate to
their asymptotic values for ybI; 1.5. After a careful examination of
Equations (76) and (77) we find analytically that the asymptotic value of %o
is given by

Figure 7b shows that
&2 - 1/v¢ | (80)

in agreement with the basic scaling for the diokotron mode obtained by Uhm and
Siambis in Reference 1.
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DISCUSSION AND CONCLUSIONS

We have carried out an extensive analysis of the filamentation in-
stability of hollow beams which for the first time provides a detailed analytical
understanding of the spectacular experimental results obtained by Kyhl and
Nebster6 26 years ago. The analytical results from this work for the filamentation
instability when compared to our results for the diokotron instability in
Reference 1 show that the two instabilities are very different in their detailed
properties and that the dickotron instability (k=0) is not a limiting case of
the filamentation instability when k-0, despite the fact that the physical
mechanisms for the two instabilities are of a similar nature, namely the azimuthal
drift of the electrons and the hollowness of the radial density profile. This
is understandable given the different physical situations where each of the two
instabilities was first observed. The diokotron instability was first found by
Bunemanz’5 in 1944 as an explanation for magnetron start up. In France, Doehler,
Warnecke and Mourier5 supported E-cross-B8 flow between non-emitting electrodes and
observed the diokotron instability. They called their device the “diokotron"
because they realized the effect was due to velocity shear, i.e., the pursuit
of electron layers of each other (&iu.xeiv = pursue). The diokotron instability,
therefore, found birth in cross-field devices, most prominent of which is the
magnetron. In these devices the electron zero order motion is in the transverse
(r,8) plane, where the diokotron instability also takes place. The axial (z)
direction in cross-field devices is basically an ignorable coordinate; it is
often short and wave activity along it is suporessed by the axial boundary
conditions of the beam and the confining cavity, hence the assumption of k=0
for the diokotron instability. This contrasts very sharply with the physical
situation where the filamentation instability applies. Narely the case of a
hollow beam in zero order axial flow having only a higher order azimuthal drift
velocity resulting from cross-field forces. In this case wave motion along the
zero order beam flow in the z-direction naturally plays a significant role; hence
k#0 and the filamentation instability has a spectrum in k-space, in fact two
spectral bands, one for positive and one for negative k. 1t is interesting to

NSWC TR 81-3%5
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note in Figures 3, 4, and 6 that as the beam's axially directed zero order
motion decreases to zero (yb»l) then the bean's azimuthal drift velocity,
resulting from cross-field forces, becomes more important and the filamentation
instability asymptotically reaches and includes in a limiting sense (as k-0)
the diokotron instability.
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Fig. 2 Radial profile of beam density.
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Fig. 6 Dependence of the growth rate and the long wavelength cutoff of the positive k spectrum of the
instability on the beam energy vy, for the case of ¢ = 3,a/R, = 0.05, Ry/R, = 0.8, “’pb/“’c =0.3,
wprO/c = 0,3. (Note that the latter two parameters are different from those in Figs. 3 - 5)
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1 |
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s

Fig. 7 Dependence of (a) long wavelength cutoff limit ¢, and wave number for maximum growth m Of

the positive k spectrum of the instability on T and (b) maximum growth rate Q’{‘ Jw pb ON Yp-
The parameters are ¢ = 5, a/R, = 0.05, Ro/Rc = 0.8, wpro/c = (.3, “’pb/“’c =0.3.
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